Synaptic transmission in a model for stochastic neural activity.

نویسنده

  • H C Tuckwell
چکیده

A stochastic model equation for nerve membrane depolarization is derived which incorporates properties of synaptic transmission with a Rall-Eccles circuit for a trigger zone. If input processes are Poisson the depolarization is a Markov process for which equations for the moments of the interspike interval can be written down. An analytic result for the mean interval is obtained in a special case. The effect of the excitatory reversal potential is considerable if it is not too far from threshold and if the interspike interval is long. Computer simulations were performed when inhibitory and excitatory inputs are active. A substantial amount of inhibition leads to an exceedingly long tail in the density of the interspike time. With excitation only the interspike interval is often an approximately lognormal random variable. A coefficient of variation greater than one is often a consequence of relatively strong inhibition. Inferences can be made on the nature of the synaptic input from the statistics and density of the time between spikes. The inhibitory reversal potential usually has a relatively small effect except when the frequency of inhibition is large. An appendix contains the model equations in the case of an arbitrary distribution of postsynaptic potential amplitudes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

The Role of Adrenergic Receptors on Neural Excitability and Synaptic Plasticity: A Narrative Review

Adrenergic receptors have an important role in neural excitability and synaptic plasticity. Despite a lot of studies on these receptors, their exact role in brain disorders accompanied with hyperexcitability has not been determined. There are also controversies on their role in synaptic plasticity. In this review article, the important studies done in this regard have been reviewed to achieve a...

متن کامل

Dynamic Stochastic Synapses as Computational Units

In most neural network models, synapses are treated as static weights that change only with the slow time scales of learning. It is well known, however, that synapses are highly dynamic and show use-dependent plasticity over a wide range of time scales. Moreover, synaptic transmission is an inherently stochastic process: a spike arriving at a presynaptic terminal triggers the release of a vesic...

متن کامل

Emergence of resonances in neural systems: the interplay between threshold adaptation and short-term synaptic plasticity

In this work we study the detection of weak stimuli by spiking neurons in the presence of certain level of noisy background neural activity. Our study has focused in the realistic assumption that the synapses in the network present activity-dependent processes, such as short-term synaptic depression and facilitation. Employing mean-field techniques as well as numerical simulations, we found tha...

متن کامل

P24: The Role of Ionotropic Glutamate Receptors in the Induction of LTP

Long-term potentiation (LTP) is a reflection of synaptic plasticity that has an important role in learning and memory. LTP is a long-lasting increase of synaptic activity due to enhancement of excitatory synaptic transmission after a high-frequency train of electrical stimulation. The role of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in excitatory synaptic tran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of theoretical biology

دوره 77 1  شماره 

صفحات  -

تاریخ انتشار 1979